Prefabrication in Dortmund – Portfolio and Capacities

Bruno Grieger, Head of Shop | April 2015
Bilfinger Piping Technologies
Locations

Headquarters
Oberhausen

- Oberhausen
- Osterode
- Frankfurt
- Dortmund (Workshop)

Total no. of employees
1,020*

* as per 31 Dec 2014
The strict adherence to our safety instructions by all our personnel, the responsibility of each person for themselves and the community as well as a role model effect are integral parts of our safety culture.

- Work safety is everybody’s responsibility
- Safety work is management work and non-delegable
- Managers are always role models
- Fair error management
- Zero tolerance for violations of rules
A sustainable HSEQ management requires an open dialogue, transparency, positive error management, accepting responsibility regardless hierarchical position as well as a continuous process of improvement.

Our **Quality Management System** and the implemented processes constitute the basis for the compliance with applied set of rules as well as customer and project-specific requirements. It is certified to international standard:

- ISO 9001

Our integrated **HSE Management System** meets internationally accepted standards and is certified accordingly to:

- ISO 14001
- SCC^p
- OHSAS 18001
- CEFRI (radiation protection management system acc. to French standard)
In order to guarantee a high quality standard, BPT holds extensive both national and international certifications.

International Certifications
- DIN EN ISO 9001:2008
- BS OHSAS 18001:2007 / SCC P
- DIN EN ISO 14001:2005
- PED 97/23/EC (Mod. A, A1, B1, F, G, H und H1)
- ASME Stamp PP, S, U, U2
- ASME III Cl I – targeted implementation 01/2015
- CEFRI
- Urzad Dozoru Technicznego (UDT)
- IAEA 50-C-Q / FRA/N/100/OL3
- DIN EN 1090
- AEO-F

National Certifications
- KTA 1401 / AVS D 100/50
- DIN 18800-7 / DIN 18809 / DIN 15018
- AD-2000 HP 0 / TRD 201 / TRB 801 Nr. 45 / KTA 3201.3
- DVGW, GW 301, G1+pe und W1+pe / AGFW FW 601, FW 1 st

Process and product certifications
- DIN EN ISO 3834-2
- DIN EN ISO 9606/15614

Customer qualifications
- Électricité de France (EDF)
- Bharat Heavy Electricals Ltd. (BHEL), etc.
Prefabrication

Shop Dortmund

- Production area 24,000 m²
- Storage area 8,000 m²
- Ground area 60,000 m²
- Capacity manhours p.a. 350,000 h
- Capacity of cranes max. 60 t
- Component diameter max. DN 4000 mm
- Component length max. 40 m
Organisation Shop Dortmund

HSE
Klaus Blombach

Head of shop
Bruno Grieger

Production
Ralf Lücke

Fertigung
Klaus Habermann / Hermann Heitz (Stv.)

QS / Material & Welding technology
Dr. Thomas Gräb

Material & Welding technol.
Dr. Fabian Stahl

Damage investigations
Salvatore Gliozzo

Labor orbital welding
Andreas Baldus

Quality dpt. Of shop
Stefan Mathias

Welding education
Jörg Dumschat

Welding consumables
Burkhard Rauscher

Project Handling / Management
Bruno Grieger (PU)

Work planning & Control
Jürgen Daldrup

Project handling
HP-piping
Jürgen Daldrup*

Project handling
Industrial piping
Jörg Meier

Investments /Special projects
Benjamin Bouraada

Sales / Quotations
Frank Schweika

Administration
Martina Wagner

Education center
Frank Bastkowski

Dispatch
Harald Pfeil

Commercial processes
Ralf Abrecht (PU)

HP Assembly
Kai-Thomas Strehl

Industrial cutting / assembly / welding
Udo Rudoff

Machining
David Andrzejczak

Maintenance & Repair
Klaus Habermann

HP Welding
Christian von Staa

Bending / Heat treatment / Straightening
Frank Becker

Calibration / Cold bending
Marcus Scheurell

Receipt / Storage / Internal transports
Kai-Thomas Strehl

Ralf Lücke

Calibration / Cold bending
Industrial cutting / assembly / welding
Prefabrication Samples I – spools with induction bendings
Prefabrication samples II – strip-cladding
Prefabrication samples III – heat treatment

<table>
<thead>
<tr>
<th>Wärmebehandlungseinrichtungen / heat treatment facilities</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Glühofen / heat treatment furnace</td>
<td>12.8 x 4 x 2.5 m & 4 x 2 x 1.5 m</td>
</tr>
<tr>
<td>Wasserbecken / quenching bath (water)</td>
<td>8 x 3 m</td>
</tr>
<tr>
<td>Induktiv Glühanlagen / inductive heat treatment equipment</td>
<td>60 - 120 kW</td>
</tr>
<tr>
<td>Widerstands-Glühanlagen / resistance-heating equipment</td>
<td>24 - 84 kW</td>
</tr>
</tbody>
</table>
Prefabrication samples IV – clean-hall (ferritic free)

- prefab of components for nuclear power plants
- prefab of austenitic spools
- clean-hall 1500 m²
Prefabrication samples V – assembling of spools in hall 2

- Prefabrication in hall 2
- Mainsteam manifold for KKW OL3
- Slug-catcher – hydraulic pressure test
- Stub ends at safety-valves
Prefabrication samples VI – apparatus manufacture

- Autothermal-reformer, material 13CrMo4-5 and 1.4571
- Outlet-manifold-systems for reformer
- Steam superheater of 347 H with ASME U-stamp
- HP – gas cooler
- Prefab of skids
- Gas control / metering station on skid
Prefabrication samples VII – coils and manifolds

boiler manifold

boiler manifold - hydrotest

ELDRO-jacketed pipe systems for airfield fuelling systems

coil of material incoloy 800H

coil of material X10CA113
Performance data:

<table>
<thead>
<tr>
<th></th>
<th>PB special</th>
<th>PB850-EHR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bending diameter</td>
<td>40 - 355 mm</td>
<td>100 - 870 mm</td>
</tr>
<tr>
<td>Wall thickness of pipe</td>
<td>2 - 100 mm</td>
<td>5 - 120 mm</td>
</tr>
<tr>
<td>Pipe length</td>
<td>up to 18 m</td>
<td>up to 18 m</td>
</tr>
<tr>
<td>Bending radius</td>
<td>95 - 1.945 mm</td>
<td>200 - 4.572 mm</td>
</tr>
<tr>
<td>Bending angle</td>
<td>max. 180°</td>
<td>max. 180°</td>
</tr>
</tbody>
</table>
Cold-bending machines
CNC165 and Tubotron 6000 R

<table>
<thead>
<tr>
<th></th>
<th>CNC165</th>
<th>Tubotron 6000 R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bending diameter of pipe</td>
<td>ø10 - 168,3mm</td>
<td>Ø 6 - 48,3 mm</td>
</tr>
<tr>
<td>Wall thickness of pipe</td>
<td>2 - 20 mm</td>
<td>2 - 5,6 mm</td>
</tr>
<tr>
<td>Pipe length</td>
<td>up to 12 m</td>
<td>up to 6 m</td>
</tr>
<tr>
<td>Bending radius</td>
<td>20 - 820 mm</td>
<td>28 - 152 mm</td>
</tr>
<tr>
<td>Bending angle</td>
<td>max. 180°</td>
<td>max. 180°</td>
</tr>
</tbody>
</table>

cooling pipes for gas turbines
pigtails for reformer
Welding technology – submerged arc welding SAW

T-Form piece
- Material: X10CrMoVNb91
- Dimension: DN 700/400
- Main pipe:
 - o. D. 752 mm,
 - i. D. 680 mm
- Nozzle:
 - o. D. 440 mm
 - i. D. 380 mm

Spherical form piece
- Material: SA182 Gr F91
- Dimension: DN 375 / 270
- Wall thickness: 55 mm
- Weight: 855 kg
Welding technology – form pieces

PP Neurath, PP Moorburg, P Eemshaven
ø290 up to ø1266mm – Wall thkn. up to 74mm

spherical form piece for Tutuka South Africa

form piece for power plant RWE-Neurath

Y-pieces for power plants
Welding technology – strip-cladding

Main cooling lines

- Order intake and prefab of cladded pipes for Russian nuclear power plants, in- and outside of Russia from 1978 – 2008

 Total weight: aprr. 16.000 tons

- Currently from 2010 for four Russian nuclear power plants (each 2 MW in Novovoronezhskaja and Leningradskaja)

 Weight: 1.200 tons

 Dimensions of pipe: ID 1.000 x 65 mm

 ID 850 x 65 mm

 Thickness of cladding: 4,2 – 5,8 mm

 Specification: TU 108.1197.83
Welding technology – SAW – narrow gap welding

Buttwelds with wall thickness max. 500 mm
Machining

<table>
<thead>
<tr>
<th>CNC-horiz. boring mill</th>
<th>in mm</th>
<th>table dim. 2000 x 1600</th>
</tr>
</thead>
<tbody>
<tr>
<td>Union BFKP 130/1</td>
<td>X2500 Y1600 Z1600</td>
<td>load max. 12500 kg</td>
</tr>
<tr>
<td>CNC-horiz. boring mill</td>
<td>in mm</td>
<td>table dim. 2000 x 1600</td>
</tr>
<tr>
<td>Union BFKP 150/1</td>
<td>X3200 Y2000 Z1500</td>
<td>load max. 10000 kg</td>
</tr>
<tr>
<td>NC/CNC-turning lathe</td>
<td>lathing diameter</td>
<td>lathing length</td>
</tr>
<tr>
<td>Ravensburg K36 N</td>
<td>D = 1250 / 950</td>
<td>5800</td>
</tr>
<tr>
<td>Boehringer VDF 400 C</td>
<td>D = 640 / 550</td>
<td>2000</td>
</tr>
<tr>
<td>Gildemeister CTX 310</td>
<td>D = 190</td>
<td>580</td>
</tr>
<tr>
<td>conv. turning lathe</td>
<td>lathing diameter</td>
<td>lathing length</td>
</tr>
<tr>
<td>Boehringer VDF VS3</td>
<td>D = 640 / 280</td>
<td>1500</td>
</tr>
<tr>
<td>LOW W 570</td>
<td>D = 490</td>
<td>1500</td>
</tr>
<tr>
<td>chamfering lathe</td>
<td>lathing diameter</td>
<td>feature</td>
</tr>
<tr>
<td>Ravensburg DW 750</td>
<td>D = 1400</td>
<td>table dim. 2000 x 1800</td>
</tr>
<tr>
<td>Droop & Rein RS3-E</td>
<td>D = 700</td>
<td>table dim. 1000 x 1000</td>
</tr>
<tr>
<td>Droop & Rein FA720T</td>
<td>D = 700</td>
<td>table dim. 1000 x 1000</td>
</tr>
</tbody>
</table>
Measuring technology I

Details about the system

- Measuring precision in relation to measuring-volume 0,02-0,07mm
- Volume with a diameter max.3,7m
- Measuring carried out by sensing with a measuring-arm
- High dimension accuracy
- Small and complex components can be measured fast and precisely

Measuring with the Faro-arm
Measuring technology II

Details about the system

- Measuring precision in relation to measuring volume 0,3mm
- Volume 7,5m x 6,5m x 5m
- Measuring carried out by sensing with a testing-probe

- Adjustment of the component is not necessary
- Complex components can be measured fast and precisely
Fields of activities

- Fitters for pipe assembling
- Lathe operators
- Manual welders
- Welding operators for prefab and site
- Advanced welding qualification
- Welding re-qualifications
- Screening of welders
- Service personnel for site
Welding technique for site I

Fields of activities:

- Tungsten Inert gas arc welding TIG
- Manual arc welding
- Gas-shielded metal-arc welding MIG / MAG
- Mechanized TIG-welding
- TIG-orbital narrow-gap welding
- Gas welding
- Brazing and weld-brazing
- Welding of plastics
Welding technique for site II

Practice of orbital narrow-gap weldings

- Current > 600 site-weldings (e.g. li 355mm x 100mm wth),
 material P92 (X10CrWMoVNb9-2)

<table>
<thead>
<tr>
<th>Power plant</th>
<th>Capacity in MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurath F/G (D)</td>
<td>2 x 1.100</td>
</tr>
<tr>
<td>Boxberg R (D)</td>
<td>660</td>
</tr>
<tr>
<td>Moorburg (D)</td>
<td>2 x 850</td>
</tr>
<tr>
<td>Lünen (D)</td>
<td>850</td>
</tr>
<tr>
<td>Westfalen (D)</td>
<td>2 x 800</td>
</tr>
<tr>
<td>GKM 9 (D)</td>
<td>900</td>
</tr>
<tr>
<td>Eemshaven (NL)</td>
<td>2 x 800</td>
</tr>
</tbody>
</table>
Research & development I

> 50 % efficiency with more than 700 °C steam temperature for coal power plants of the future shall reduce the pollution of environment, but pose high demands on the materials.

To achieve this progress - today steam temperatures of 600 – 620 °C are used in practice – Bilfinger Piping Technologies actively participates in research and development projects, such as in the power plant of GK Mannheim.

- Materials: Alloy 617 mod, P91, P92

725 °C high temperature material test loop at GKM
Research & development II

- Development of the TIG – orbital narrow-gap welding technique
- Optimizing of heat treatments

- COMTES 700 - PP Scholven
 700 °C mainstream temperature
 material: Alloy 617 mod, Alloy C-263

- HWTII - GKM, Encio - Italy
 725 °C mainstream temperature
 material: Alloy 617 mod. Alloy C-263
Your partner in prefabrication - contacts

Bilfinger Piping Technologies GmbH
Shop Dortmund

Alter Hellweg 33 – 44379 Dortmund
phone: +49 231 6182 - 0
Mail: info@piping.bilfinger.com

Head of shop:
Bruno Grieger
phone: - 200 Mail: Bruno.Grieger@bilfinger.com

Sales and inquiries:
Frank Schweika
phone.: - 290 Mail: Frank.Schweika@bilfinger.com

Production:
Ralf Lücke
phone.: - 313 Mail: Ralf.Luecke@bilfinger.com

Project handling:
Jürgen Daldrup
phone.: - 502 Mail: Juergen.Daldrup@bilfinger.com

Jörg Meier
phone.: - 300 Mail: joerg.meier@bilfinger.com

Quality department:
Stefan Mathias
phone.: - 274 Mail: Stefan.Mathias@bilfinger.com
BACKUP-SLIDES: Reference projects
Power plant Neurath 2 x 1,100 MW, Germany

Customer: RWE Power AG

Scope: Engineering, supply, pre-fabrication and installation, commissioning and trial operation of HP*/IP**/LP** systems

Award of contract: 2006/2007

Applied standards: DGRL / DIN EN 13480 / DIN EN 12952

Materials: X10CrWMoVNb9-2 (P92) / 15NiCuMoNb5-6-4 (WB36) / 10CrMo9-10 / 13CrMo4-5 / 16 Mo3

* Consortium Bilfinger Piping Technologies / KAM
** Consortium Bilfinger Piping Technologies / ETABO / BIS VAM
Boxberg Unit R – HP pipes, 670 MW, lignite-fired, Germany

Customer: Vattenfall Europe AG

Scope: Engineering (with PDMS), manufacturing, supply, installation, quality management, commissioning, trial operation and documentation incl. valves, insulation, wall and ceiling bushings, signage as well as lifetime monitoring system (force and travel measurement)

Award of contract: 2006

Applied standard: DGRL 97/23 EG

Materials: X10CrWMoVNb9-2 (P92) up to 85 mm wall thickness

Characteristics:
- Installed weight: approx. 1,700 tons
- Length of pipes: approx. 8,000 m
- Welds: approx. 3,500
- Repair rate: 0.7%
Steam power station Lünen Trianel 800 MW - HP pipes, Germany

Customer: Siemens AG / Erlangen
Scope: Design and implementation of HP systems with PDMS
- Project management, engineering, supply, pre-fabrication, installation, commissioning, trial operation and documentation
Award of contract: 2007
Applied standards: DIN EN 12952 / DGRL
Materials: P92, WB36, 10CrMo9-10, 16Mo3 and C steel
Characteristics:
- 6,500 m pipes (DN 10 - DN 900)
- 3,200 circular welds, of which are
- 82 orbital welds (P92 / 58 to 135 mm)
- Repair rate under 0.7 % of all tested welds
RDK8 coal-fired power station 912 MWel, Karlsruhe, Germany

<table>
<thead>
<tr>
<th>Customer</th>
<th>Alstom Power, Mannheim & Stuttgart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>New installation of coal-fired power station of EnBW Engineering, supply and pre-fabrication of the HP-piping systems and supports (live steam, hot reheat, feed water incl. small bore piping)</td>
</tr>
<tr>
<td>Award of contract</td>
<td>2006</td>
</tr>
<tr>
<td>Applied standards</td>
<td>DGRL / DIN EN 12952 / DIN EN 13480 / Alstom guidelines</td>
</tr>
<tr>
<td>Materials</td>
<td>Pipes, bendings, formpieces, valves and supports P92, WB36, 10CrMo9-10, 16Mo3 and C steel</td>
</tr>
</tbody>
</table>
Coal-fired power station Boxberg, Block N, Germany

Customer Vattenfall Europe AG
Scope Design, supply, de-installation, installation and commissioning - modernisation of hot reheat piping incl. pipes, bendings, formpieces and flow metering (design software AUTO-CAD)
Award of contract 2007
Material 10CrMo9-10
Characteristics Length of pipes for hot reheat 1,030 m
Supplied volume 1,380,000 kg
Piping Projects
Conventional Energy Technologies

Coal-fired power station Bełchatów, Poland

Customer BOT Elektrownia Bełchatów S.A..
Scope Design and supply of live steam, hot and cold reheat and spray water piping incl. bendings as well as formpieces (design software: AUTO-CAD)
Award of contract 2008
Materials Live steam and hot reheat - X10CrMoV Nb9-1
 Cold reheat - 16Mo3
 Spray water - 13CrMo4-5
Characteristics X10CrMoV Nb9-1 770 m
 16Mo3 100 m
 13CrMo4-5 100 m
 Supplied volume approx. 470,000 kg
New construction of Olkiluoto 3, Finland, 1,600 MWel EPR

Customer: AREVA

Scope:
- Detailed engineering, pre-fabrication and installation of pipes in Nuclear Island
- Design, pre-fabrication and installation of all secondary pipe systems in the reactor, safety- and ancillary buildings

Award of contract: 2005

Applied standards: RCCM – Code

Characteristics:
- 152,000 welds
- Installed pipes / supports: 2,700 tons
- Pre-fabrication: 5,300 isometrics (12,000 spools)
- 2,300 inductive/cold bendings
Olkiluoto 3, Finland, new construction 1,600 MWel EPR

Customer: Siemens Turbine Island
Scope: Detailed engineering, supply, manufacture, installation
Live steam feed water system in turbine building
Award of contract: 2005
Characteristics:
- Installed pipes / supports: 1,250 tons
- Pre-fabrication: 450 tons

Main dimensions:

<table>
<thead>
<tr>
<th>Live steam 16 Mo3</th>
<th>Feed water 16Mo3</th>
</tr>
</thead>
<tbody>
<tr>
<td>li. 925 x 43 MdWd</td>
<td>li. 825 x 50 MdWd</td>
</tr>
<tr>
<td>li. 740 x 39 MdWd</td>
<td>li. 720 x 44 MdWd</td>
</tr>
<tr>
<td>li. 415 x 26 MdWd</td>
<td>li. 585 x 36 MdWd</td>
</tr>
<tr>
<td>li. 400 x 19 MdWd</td>
<td>li. 479 x 26 MdWd</td>
</tr>
</tbody>
</table>
Integrated Event, IE 2013 “ExxonMobil; TA 2013”, Belgium

<table>
<thead>
<tr>
<th>Customer</th>
<th>ExxonMobil (Belgium)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>Piping work and exchange valves during turnaround, conversion of the furnace N1F101 and N2F101 incl. crossover piping, new installation of a transfer pipe DN 600 and an approx. length of 160 m</td>
</tr>
<tr>
<td>Award of contract</td>
<td>2012 (implementation in 2013)</td>
</tr>
<tr>
<td>Applied standards</td>
<td>DGRL (PED)</td>
</tr>
<tr>
<td>Materials</td>
<td>13CrMo4-5 / 10CrMo9-10</td>
</tr>
<tr>
<td>Characteristics</td>
<td>Zero reportable accidents Spools of furnace pipes with a length of 32 m each → development of a special installation procedure</td>
</tr>
</tbody>
</table>
Plant service
Turn-around

<table>
<thead>
<tr>
<th>Esso Refinery Ingolstadt</th>
</tr>
</thead>
<tbody>
<tr>
<td>▪ Contract award: 2004</td>
</tr>
<tr>
<td>▪ Completion date: February 2005</td>
</tr>
<tr>
<td>▪ Customer: Esso Ingolstadt</td>
</tr>
<tr>
<td>▪ Contract value: 2 m EUR</td>
</tr>
<tr>
<td>▪ Scope of work: Retubing of furnace and replacement of piping</td>
</tr>
<tr>
<td>▪ Shut-down period: 18 days</td>
</tr>
<tr>
<td>▪ Total pipe length: 5,100 m</td>
</tr>
<tr>
<td>▪ Retubing portion: 2,000 m</td>
</tr>
<tr>
<td>▪ Weld seams: 2,500 pcs.</td>
</tr>
<tr>
<td>▪ Cast supports (HP45MOD): 10,000 kg</td>
</tr>
</tbody>
</table>

Safety Award for zero-accident job
Shell Wesseling, Germany

Customer: Shell Deutschland Oil
Rheinlandraffinerie Wesseling (Süd) (refinery)

Scope: Rheinpower II
Engineering / supply / manufacture and installation within project “Doubleblock and Bleed Valves / Boiler Feed Water Pumps”

Award of contract: 2008 (implementation from 2008 until 2012)

Applied standards: SDO guidelines and DGRL

Materials: X10CrMoVNb9-1 / 10CrMo9-10 et al.

Characteristics:
- 124 HP valves DN 100 – DN 250
- 1,200 small valves DN 15 – DN 50
- approx. 6,500 m pipes
- approx. 143,000 kg
Elverlingsen E3 (186 MW), Germany

<table>
<thead>
<tr>
<th>Customer</th>
<th>Mark E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>Non-destructive testing and replica, in-service maintenance and technical calculations to estimate the condition of components</td>
</tr>
<tr>
<td>Award of contract</td>
<td>2005</td>
</tr>
<tr>
<td>Applied standards</td>
<td>DIN EN 13480-3, VGB-TW 507, VGB-R 509</td>
</tr>
<tr>
<td>Materials</td>
<td>X20CrMoV11-1, 14MoV6-3</td>
</tr>
</tbody>
</table>
Shell Godorf, Germany

Customer: Shell Deutschland Oil
Rheinlandraffinerie Godorf (Nord)

Scope: Project CORE / Turnaround (TA) /
TA-LUFT / TGU / Cooling water

Award of contract: 2012 (implementation from 2012 until 2013)

Materials: 1.4571 / 1.4541
P5 / 16Mo3 / P235GH et al.

Characteristics: 710 valves DN 25 – DN 700
approx. 2,330 m pipes
approx. 95,300 kg
approx. 5,200 welds
Power station Neurath Units F & G (2 x 1050 MW), Germany

<table>
<thead>
<tr>
<th>Customer</th>
<th>RWE Power</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>Auxiliary steam regulating station as safety-controlled pressure regulating valve and associated hydraulic station, Actuation through hydraulically operated piston, with closing spring</td>
</tr>
<tr>
<td>Award of contract</td>
<td>2007</td>
</tr>
<tr>
<td>Applied standards</td>
<td>TRD 421</td>
</tr>
<tr>
<td>Materials</td>
<td>GS C25</td>
</tr>
<tr>
<td>Characteristics</td>
<td>Quick shut-down in 5 sec.</td>
</tr>
</tbody>
</table>
Service

Flow Measurement Technology

<table>
<thead>
<tr>
<th>Power station Neurath Units F & G (2 x 1050 MW), Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Customer</td>
</tr>
<tr>
<td>Scope</td>
</tr>
<tr>
<td>Award of contract</td>
</tr>
<tr>
<td>Applied standards</td>
</tr>
<tr>
<td>Materials</td>
</tr>
<tr>
<td>Characteristics</td>
</tr>
</tbody>
</table>